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Abstract. A system with anholonomic constraints where the trajectories of physical degrees of
freedom are autoparallels on a manifold equipped with a general Cartan connection is discussed.
A variational principle for the autoparallel trajectories is derived from the d’Alambert–Lagrange
principle for anholonomic constrained systems. A geometrical (coordinate-independent)
formulation of the variational principle is given. Its relation to Sedov’s anholonomic variational
principle for dissipative systems and to Poincaré’s variational principle in anholonomic reference
frames is established. A modification of Noether’s theorem due to the torsion force is studied.
A non-local action whose extrema contain the autoparallels is proposed. The action can be made
local by adding auxiliary degrees of freedom coupled to the original variables in a special way.

1. Anholonomic constrained systems

There is no need to explain the importance of constrained systems in modern physics
(e.g. electrodynamics, Yang–Mills theory, general relativity, etc). Constraints in dynamical
systems are usually regarded as a part of the Euler–Lagrange equations of motion which do
not involve time derivatives of order higher than 1. In other words, both constraints and
equations of motion result from the least action principle applied to some Lagrangian. The
existence of the Lagrangian formalism is of great importance in constrained systems because
it allows one to develop the corresponding Hamiltonian formalism [1] and canonically
quantize the system [1]. Yet, the variational principle is a powerful technical tool to find
integrals of motion of dynamical systems via symmetries of the Lagrangian.

The Hamiltonian (or Lagrangian) constrained systems form a relatively small class
of constrained dynamical systems. Given an ‘unconstrained’ system whose dynamics
is governed by a LagrangianL = L(v, x), vi and xi being generalized velocities
and coordinates, respectively, one can turn it into a constrained system by imposing
supplementary conditionsFα(v, x) = 0 (constraints) which has to be fulfilled by the actual
motion of the system. There two ways to incorporate the constraints into a dynamical
description. First, one can simply modify the LagrangianL → L + λαFα with λα being
the Lagrange multipliers and treat the latter as independent dynamical variables. In doing
so, we are led to the Lagrangian constrained dynamics. The other way is to supplement the
unconstrained Euler–Lagrange equations d/dt (∂vL)−∂xL = 0 by the constraintsFα = 0. It
is well known that if the constraints are not integrable, the two dynamical descriptions are not
equivalent [2, 3]. The non-integrable constraints are called anholonomic, and the dynamical
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systems described in the latter of the above two ways are known as anholonomic systems. In
general, there exists no Lagrangian or Hamiltonian formalism for anholonomic systems, i.e.
they arenon-Lagrangiandynamical systems [2]. The existence of constraints implies that
the dynamical system has non-physical degrees of freedom, meaning that the actual motion
of the system is determined by a lesser number of independent parameters than the number of
initial values of generalized coordinates and velocities. For holonomic systems, the motion
of the physical degrees of freedom can be obtained by applying the conventional variational
principle to the Lagrangian reduced on the constraint surfaceL→ L|F=0. When applied to
anholonomic constraints, this procedure leads to wrong equations of motion [2, 3]. Despite
of being non-Lagrangian, the dynamics of physical degrees of freedom in anholonomic
constrained systems may possess ‘good’ properties, e.g. a covariance under some group
transformations, existence of integrals of motion with a clear physical interpretation, etc,
that is, the properties that one always wants to see in physical systems.

An example of this kind is provided by the autoparallel and geodesic motions on a
manifold equipped with a general connection0µνσ compatible with metricgµν,Dµgνσ = 0,
whereDµ is the covariant derivative. In [4] it has been shown that the autoparallels can
be realized as the trajectories of the physical degrees of freedom in a special anholonomic
constrained system, while the geodesics can always be regarded as the trajectories in a
holonomic constrained system. On a manifoldM the autoparallels and geodesics are
determined respectively by the following equations covariant under general coordinate
transformations

Dvv
µ = v̇µ + 0µνσ vνvσ = 0 (1.1)

D̄vv
µ = v̇µ + 0̄µνσ vνvσ = 0. (1.2)

HereDv is the covariant derivative along the velocity vectorvµ and0̄µνσ are the Christoffel
symbols. Both equations (1.1) and (1.2) determine a curve that parallel-transports its tangent
vector along itself. The curve with such a property is the autoparallel when the most general
connection compatible with the metric is used to specify the parallel transport. The geodesic
motion occurs if the natural Riemannian connection (induced by the metric) is chosen to
define the parallel transport. The difference of (1.1) from (1.2) resides in the torsion force
term. Any connection compatible with the metric can always be represented in the form
[5] gσλ0λµν = 0̄σµν + Kσµν , whereKσµν = Sσµν − Sµνσ + Sνσµ is called the contorsion
tensor, andgσλSλµν = Sσ µν = 1

2(0
σ
µν − 0σ νµ) is the torsion tensor. The deviation of the

autoparallels from the geodesics is caused by the torsion forceKµνσ v
νvσ .

The geodesic equation (1.2) follows from the Hamilton variational principle applied to
the action

S = 1
2

∫
dt gµνv

µvν (1.3)

or to its relativistic analogue

S = −
∫

ds = −
∫

dt
√
gµνvµvν (1.4)

with s being the proper time (or length) of the trajectory (in this case,vµ = dqµ/ds and
v̇µ = dvµ/ds in (1.2)). A particle moving along the autoparallel trajectory is an example
of a non-Lagrangian system. A system of differential equations of second order is called
Lagrangian if there exists a local Lagrangian such that the original system is equivalent to
the Euler–Lagrange equations. One can formulate the sufficient conditions, known as the
Helmholtz conditions, for a given dynamical system to be Lagrangian [6]. Even if these
conditions are not fulfilled, one can still try to find anon-local action for a given dynamical
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system. In section 6 we construct an explicit example of a non-local action whose extrema
contain the autoparallels. From the geometrical point of view equation (1.1) is just as good
as equation (1.2) and may be regarded or postulated as an equation of motion of a spinless
particle on a manifold†.

Here we generalize the embedding procedure of [4] to arbitrary spaces with curvature
and torsion. Next we use the representation of the autoparallel motion as a motion of an
anholonomic system to establish a variational principle for the Lagrangians (1.3) and (1.4)
which leads to equation (1.1). The variational principle is derived from the well known
variational principles for anholonomic systems, such as Gauss’ principle of least constraint,
Hölder and d’Alambert–Lagrange principles [2, 3, 10]. However, in contrast to them, it
has an advantage in that it applies to Lagrangiansreducedon the surface of constraints.
We shall also show that the new variational principle can be given a completely covariant
(coordinate-independent) formulation on a manifold with a general Cartan connection. For
this reason we shall refer to it as acovariant variational principle. Its relation to the
variational principle of Poincaré [11] and to that proposed by Sedov for dissipative systems
[12] is explained. Finally, we propose a modification of the actions (1.3) and (1.4) by
adding new auxiliary degrees of freedom so that the modified actions have extrema being
the autoparallels and admit the conventional Hamiltonian formalism.

2. Autoparallels from constrained motion

Consider a metric manifoldM and local coordinatesqµ on it. Let0µνσ be components of
a connection onM in the coordinate basis. We denoteP(M) the space of all paths inM,
TqM the tangent space at a pointqµ, andTM the tangent bundle. Consider an auxiliary
Euclidean spaceRn of the dimension greater than that ofM, n > dimM. Cartesian
coordinates inRn are denoted byxi . In the spaceP(Rn) of all paths inRn we define a
subspace ofconceivablepaths (i.e. of those allowed by constraints) as an image ofP(M)
in the embeddingP(M)→ P(Rn):

xi(s) =
∫ s

dqµ εiµ(q) (2.1)

for any pathqµ(s) in M. The embedding functionsεiµ(q) are smooth onM. From the path
embedding (2.1) follows the embedding of the tangent spaceTqM into Rn

vi = εiµ(q)vµ vµ ∈ TqM (2.2)

because one can always find a curveqµ(s) passing through a pointqµ such thatvµ =
dqµ (s)/ds.

The spaceM cannot be embedded intoRn pointwise if the constraints (2.2) on
the tangent space (or on the velocities of the conceivable motion) are not integrable
(anholonomic constraints):∮

dqµ εiµ(q) 6= 0 (2.3)

for any closed path inM. That is, the one-formsεiµdqµ are not closed, and there exist no
mappingM → Rn, xi = xi(q), induced by (2.2).

† Here we do not discuss physical arguments which of those two trajectories should be identified with a physical
trajectory of a spinless point-like particle moving in a space with torsion. An interested reader may find physical
arguments supporting both geodesics [7] and autoparallels [8, 9]. Note also that a massive particle with spin would
follow neither of these trajectories due to the interaction between its spin and the spacetime geometry.
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The scalar product inRn, (w, v) = δijw
ivj , induces the metric onM. For any two

vectors being the images of two elements ofTqM we have

(w, v) = gµνwµvν gµν = (εµ, εν) vµ,wµ ∈ TqM. (2.4)

Next, we determine a connection induced by the path embedding. To do so, we require that
the parallel transport inM must be compatible with the embedding (2.1). This means the
following. Consider a curveqµ(s) passing through a pointqµ ∈ M and its imagexi(s).
Take a vector fieldwµ ∈ TqM and parallel-transport it along the curveqµ(s). The resulting
vector is then embedded intoRn by means of (2.2). Let us repeat the procedure in the
opposite way. First we embed the vectorwµ and then parallel-transport its image along
xi(s), the image ofqµ(s). The compatibility condition implies that the vectors obtained
by these procedures may differ by a vector orthogonal to the hyperplane being the image
of TqM, and this should hold for any curve and anywµ. We remark that this condition is
weaker than a similar condition of [4] and it is sufficient to obtain the most general spaces
with curvature and torsion.

An infinitesimal variation ofwµ under the parallel transport is proportional toDvw
µ,

wherevµ = q̇µ, while the corresponding variation of its image,wi = εiµw
µ, is Dvw

i =
dvwi = dwi/ds because the connection inRn is trivial. The compatibility condition means
that

dwi

ds
− εiµDvw

µ = f iµνvµwν (εσ , fµν) = 0. (2.5)

Computing the derivative in the left-hand side of (2.5) and assumingvµ and wµ to be
arbitrary we find

Dµε
i
ν = f iµν. (2.6)

Multiplying this equation byεiσ we obtain the connection coefficients

0µνσ = gµλ(ελ, ∂νεσ ) (2.7)

wheregνµgµσ = δνσ . It is easy to verify that the compatibility condition also holds for
tensors of higher rank, provided the induced metric is used to lower and rise tensor indices.
Thanks to the compatibility condition, the induced connection turns out to be compatible
with the induced metricDµgνσ = (Dµεν, εσ )+ (εν,Dµεσ ) = 0. In the non-integrable case
(2.3), the induced connection may have a torsion

Sµνσ = 1
2g

µλ [(ελ, ∂νεσ )− (ελ, ∂σ εν)] . (2.8)

The tensor fieldsf iµν must also satisfy the integrability condition for equation (2.6) resulting
from the commutation relation

[Dµ,Dν ] = RµνσλLσλ − 2Sσ µνDσ (2.9)

whereLµν = −Lνµ are generators of a (pseudo)orthogonal group acting in the tangent
space ofM, andRµνσλ is the Riemann–Cartan curvature tensor. Using the integrability
conditions we derive

(fµλ, fνσ )− (fνλ, fµσ ) = 2Rµνλσ . (2.10)

That is, the tensor fieldsf iµν determine the Riemann–Cartan curvature tensor onM. The
casef iµν = 0 corresponds to the so-called teleparallel spaces with zero curvature and non-
zero torsion. With sufficiently largen (at least one should have 2n > 1+ (dimM)2, the
number of independent components of the metric and torsion tensors), one can construct
the most general connection onM.
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Let us analyse dynamics induced by the anholonomic constraints (2.2), assuming the
unconstrained motion to be a free motion in the Euclidean spaceRn. There are several
variational principles for anholonomic systems [10] that can be applied to our system to
derive the equations of motion. If the constraints are integrable, they are all equivalent to
the conventional Hamilton variational principle.

In the auxiliary Euclidean space the states of the system are labelled by pairsψ =
(vi, xi). For any two trajectoriesxi1,2(s) passing through the stateψ , Gauss’ deviation
function is defined as [3, 2]

Gψ = 1
2(v̇

i
1− v̇i2)Hij (v̇j1 − v̇j2) (2.11)

whereHij (ψ) = ∂2L/∂vi∂vj is the Hessian for a LagrangianL in the stateψ . Gauss’
principle of least constraint states that the deviation of conceivable motions (allowed by
the constraints) from the released (unconstrained) motion takes a stationary value on the
actual motion. A physical meaning of Gauss’ principle is transparent: the acceleration (or
the force) caused by the constraints must have a minimal deviation from the acceleration
of the unconstrained motion. In our system the released motion is the free motion
v̇i = 0, Hij = δij , the accelerations of the conceivable motion are obtained by taking a
time derivative of (2.2). The Gauss deviation function assumes the form

Gψ = 1
2gµνDvv

νDvv
µ + 1

2(fv, fv) f iv = f iµνvµvν. (2.12)

The second term in the deviation function does not depend on the acceleration at the physical
stateψ = (qµ, vµ), while the first term is non-negative and attains its absolute minimum if
Dvv

µ = 0, i.e. for the autoparallel trajectories.
Let us denote the Lagrange derivative as [L]i = −d/ds(∂viL) + ∂xiL. We recall that

elements of the tangent space are also calledvirtual velocitiesin analytical mechanics. The
d’Alambert–Lagrange principle asserts that the conceivable motion of a system with the
LagrangianL is an actual motion if for every moment of time [3, 2]

(w, [L]) = 0 (2.13)

for all virtual velocities of the constrained motion. We takeL = (v, v)/2 and calculate
[L]i for the conceivable motion [L]i = −v̇i = −d/ds(εiµv

µ). For virtual velocities
of the constrained motionwi = εiµw

µ, equation (2.13) assumes the form(w, [L]) =
−gµνwνDvv

µ = 0. For an arbitrarywµ, it leads to the autoparallel equation (1.1).
There is an equivalent formulation of the d’Alambert–Lagrange principle known as

Hölder’s variational principle [3, 2]. A conceivable path is called a critical point of the
action functional if its variation vanishes when restricted on the subspace of virtual velocities
of the constrained motion. Ḧolder’s variational principle assumes that the actual constrained
motion is the critical point of the action. For an infinitesimal variation of the trajectory we
haveδxi(s) = uwi(s), u→ 0. ThenδS[x]/δxi = ∂uS[x + δx]|u=0 = 0. This is equivalent
to (2.13). Restricting the virtual velocitywi to the subset specified by constraint (2.2) we
arrive at the autoparallel equation (1.1).

All the conventional variational principles for anholonomic systems are applied tonon-
constrainedLagrangians, while the constraints are implemented through the restriction of
path variations to aspecific class determined by the constraints. We shall now develop
this idea further and find an equivalent variational principle that applies to the Lagrangian
restricted on the surface of constraints. We recall that for anholonomic constraints the
Hamilton variational principle leads to wrong equations of motion, when applied to the
Lagrangian restricted on the constraint surface. In particular, we shall find a variational
principle for the Lagrangian (1.3) or (1.4) that leads to the autoparallel equation (1.1).
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Before we proceed let us make a remark. Our treatment of the autoparallel motion as an
anholonomically constrained motion is somewhat unconventional. Typically, anholonomic
constraints are imposed directly on positions and velocities of the unconstrained motion, i.e.
onxi andvi (e.g. a skater on an inclined plane, a rolling ball on a rough surface, etc, [3, 13]).
They can be regarded as restrictions on theinitial values of velocities and positions so that
solutions of equations of motion depend on the less number of parameters. A historical
reason for such a treatment is that the positionsxi can be measured and have a natural
physical meaning in many concrete anholonomic systems [13]. It is important to observe
that for anholonomic constraints there exists no subspace in the original configuration space
that could be identified with the physical configuration space formed by initial values
of positions allowed by the constraints. In our anholonomic system, we have explicitly
introduced a physical configuration spaceM, while the auxiliary Euclidean space is used
only to formulate a dynamical principle that specifies the motion inM. Since anholonomic
constraints do not allow us to regardM as a submanifold in the configuration spaceRn
of the unconstrained system, we have imposed constraints by restricting paths inRn to
a subclass permitted by the constraints, i.e. through the embedding of all trajectories of
physical degrees of freedomP(M) into P(Rn). This is always possible for any type of
constraints.

3. Variational principle on manifolds

Here we shall give a formulation of the variational principle on manifolds that is convenient
for the subsequent generalization to anholonomic systems.

Consider a vector fieldwµ(q) onM satisfying the boundary condition

wµ(q1) = wµ(q2) = 0 (3.1)

and an action functionalS = ∫ ds L(v, q) for any trajectory connecting the pointsqµ1,2. We
definea variation of the action relative the vector fieldwµ by

δwS =
∫

ds

(
∂L

∂vµ
dw v

µ + ∂L

∂qµ
wµ
)
. (3.2)

The derivative dwvµ of the velocity along the variation vector field specifies the variation
of vµ. Given a trajectoryqµ = qµ(s), the velocity vector fieldvµ is known only along the
trajectory, while we need to know the behaviour ofvµ in the vicinity of the trajectory in
order to calculate dwvµ for a genericwµ. We require

Lwvµ ≡ dwv
µ − dvw

µ = 0 (3.3)

where Lwvµ = −Lvwµ denotes the Lie derivative onM. Thus, for any Lagrangian,
being a function on the tangent bundleTM, the smooth vector fieldwµ onM determines a
variation of the position, and equation (3.3) specifies the variation of the second independent
coordinate onTM, the velocityvµ. Equation (3.3) can be given a tensor form symmetrical
relative the velocity and variation vector fields

Lwvµ = Lvwµ. (3.4)

The Euler–Lagrange equation follows from dvw
µ = dwµ/ds, the boundary condition (3.1)

andδwS = 0 that should hold for anywµ. Since the Lie derivative of a tensor is a tensor
[5], equations (3.3) and (3.4) are covariant under general coordinate transformations, and
so are the corresponding equations of motion if the Lagrangian is a scalar.

The above geometrical formulation of the variational principle is equivalent to the
conventional one where the variation of the action is defined via smooth path variations.
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Indeed, equation (3.3) implies that for any trajectoryqµ(s) with fixed endpoints there exists
a one-parameter family of trajectoriesqµ(s, u) ≡ qµu (s) with the same endpoints such that
qµ(s, u = 0) = qµ(s) andwµ = ∂uqµ(s, u) in the vicinity of the trajectoryqµ(s). In other
words, there exists a local coordinate netqµ(s, u) such thatvµ andwµ are tangent vectors
for the coordinate linesu = constant ands = constant, respectively. The variableu plays
the role of the variation parameter so thatδwS[q] = d/du S[qu]|u=0.

If the velocity variation is specified by means of a new principle, other than a
smooth deformation of the path, condition (3.3) would become modified and, therefore,
the variational principle would yield new equations of motion. To obtain such a new
principle for the autoparallel motion, we use the variational principles for anholonomic
systems discussed in section 2. If condition (3.3) is dropped, then there exists no coordinate
net qµ(s, u) such thatwµ = ∂uqµ(s, u) if vµ = ∂sqµ(s, u). For this reason the variation
(3.2) will be called non-coordinate or anholonomic. Note thatwµ remains a smooth vector
field onM.

4. Covariant variational principle

On a pathqµ(s) with fixed endpoints, consider a vector fieldwµ that satisfies the boundary
condition (3.1). Its imagewi(s) = εiµ(q(s))wµ(q(s)) determines a variation vector field on
the image trajectoryxi(s). By construction the variation vector fieldwi(s) belongs to the
class of virtual velocities allowed by the constraints. The variation of the velocity vector
dwvµ is to be determined by Ḧolder’s variational principle (2.13). We assume that the
variation (3.2) of the unconstrained action (µ is to be replaced by the Cartesian indexi) is
equal to the Ḧolder variation (2.13) when the former is restricted on the constrained surface

δwS =
∫

ds (w, [L]). (4.1)

Integrating by parts in the right-hand side of (4.1) and making use of the boundary condition
(3.1) we obtain(

dwv,
∂L

∂v

)
=
(

dvw,
∂L

∂v

)
. (4.2)

The integration has been omitted because (4.1) holds for an arbitrary variation vector field
allowed by the constraints. On the constraint surface, we have∂viL = ε

µ

i ∂vµL, ε
µ

i =
δij g

µνε
j
ν andwi = εiµwµ. Relation (4.2) leads to

(dwv − dvw, ε
µ) = 0 (4.3)

since∂vµL is also arbitrary. From the compatibility condition (2.5) it follows that

(dwv, ε
µ) = Dwv

µ (4.4)

and, similarly,

(dvw, ε
µ) = Dvw

µ. (4.5)

Equation (4.3) leads to the sought-for condition that specifies the variation of the velocity
vµ

Dwv
µ = Dvw

µ. (4.6)

It can be written as

Lwvµ = dwv
µ − dvw

µ = 2Sµσνv
νwσ . (4.7)
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The derivative dwvµ is proportional to the difference of the vector fieldvµ at two
neighbouring pointsqµ andqµ+uwµ, u→ 0, i.e.u dwvµ = (vµ+u dwvµ)−vµ. A similar
interpretation holds for dvwµ. The left-hand side of equation (4.7) contains four vectors
that can be combined to form a parallelogram [wµ+ (vµ+u dwvµ)]− [vµ+ (wµ+u dvwµ)]
which is not closed as follows from (4.7). Thus, Hölder’s variational principle has led us
to the conclusion that the velocity variation must be chosen so that theclosure failureof
the parallelogram formed by the velocity and variation vectors would be proportional to
the torsion. Note also that the closure failure of the parallelogram induced by the parallel
transport of any two vector fields along one another (4.6) is also usedto definethe torsion
on a manifold [5].

Let us take a LagrangianL = L(v, q) on TM and find the equation of motion resulting
from the new variational principle. Substituting dwv

µ into (3.2) and using the boundary
condition (3.1) to integrate by parts, we obtain

δwS =
∫

dswµ
(

[L]µ + 2Sνµσ
∂L

∂vν
vσ
)
. (4.8)

The modified Euler–Lagrange equations are

d

ds

∂L

∂vµ
− ∂L

∂qµ
− 2Sνµσ

∂L

∂vν
vσ = 0. (4.9)

To obtain equation (4.9) for the autoparallel motion in spaces with torsion, the
noncommutativity of the variation and time derivative has been first postulated in [14]
and later also considered in [15, 16].

Taking the LagrangianL = (v, v)/2 or L = −√(v, v) in the auxiliary Euclidean space
and restricting it on the constraint surfacevi = εiµvµ, we obtain the action (1.3) or (1.4). By
construction the variational principleδwS = 0, where the variation onTM is determined
by (4.6), should yield the autoparallel equation (1.1). It is not hard to be convinced that the
modified Euler–Lagrange equation (4.9) indeed leads to (1.1).

A few remarks are in order. Our derivation of the condition (4.6) does not rely on
whether the unconstrained Lagrangian explicitly depends on the auxiliary Cartesian variables
xi or not. The terms involving∂xiL in equation (4.1) are cancelled. For this reason the
final condition (4.6) does not depend on the form of the auxiliary unconstrained Lagrangian
and may be applied to any Lagrangian on the physical configuration space.

Condition (4.6) is covariant under general coordinate transformations onM and has
a transparent geometrical meaning. Acovariant variation of vµ along wµ is equal to
a covariant variation ofwµ along vµ. All the modification of (3.4) we have made is
that the Lie variation has been replaced by the covariant variation. It is quite remarkable
that for tensors on a manifold there exists onlytwo independent variations that produce
tensors out of tensors and involve a displacement [5, p 336]: the Lie variationLw and
the covariant variationDw. Thus, two geometrically distinguished curves on a manifold,
geodesics and autoparallels, can be associated with the two independent variations available
on the manifold equipped with a connection compatible with the metric.

If the torsion is not zero, the variations induced by operatorsDw andDv are non-
coordinate (or anholonomic) because the basisDµ in TqM is a non-coordinate basis [17].
Indeed, assume that there exists a coordinate netqµ = qµ(s, u) such that the relation
∂s,u = Dv,w holds. TakingF to be a scalar, from (2.9) we derive

[Dµ,Dν ]F = −2Sσ µνDσF. (4.10)

The curvature term does not contribute to the commutator (4.10) becauseF is a scalar.
Thus, [∂s, ∂u] 6= 0, and there is no coordinate system for which the covariant derivatives
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Dv,w play the role of the translation operators along the coordinate lines.
The use of a non-coordinate basis in the tangent space to determine a variation of the

action is not something unusual in mechanics. Some analogy can be made with Poincaré’s
variational principle in non-inertial reference frames (e.g. a rigid body in the body-fixed
reference frame) [11, 3]. One looks for areformulationof the Hamilton variational principle
in anon-coordinatebasis in the tangent space ofM. The coordinate basis inTqM can always
be chosen as∂µ so that a variation ofF(q) is δµF ∼ ∂µF . We can also assume another
basiseµ′ = eµµ′(q)∂µ in the tangent space to determine a variation of any quantity onM. In
general, this basis is non-commutative and, hence, non-coordinate

[eµ′ , eν ′ ] = 2Cσ
′
µ′ν ′eσ ′ (4.11)

where the structure functions of the Lie algebra (4.11) are coefficients of the object of
anholonomity [5]. In the new basis we havevµ = eµµ′vµ

′
, eµµ′e

µ′
ν = δµν . The components

vµ
′

of the velocity vector field in a non-coordinate basis are called quasivelocities because
there is noqµ

′
(q) such thatvµ

′ = q̇µ
′
. The problem is to find a variational principle

for the Lagrangian where the velocity components are taken in the non-coordinate basis,
L̃(vµ

′
, qµ) = L(vµ, qµ). It is solved by rewriting equations (3.2) and (3.3) in the non-

coordinate basis. Equation (3.3) assumes the form (4.6) whereµ is replaced byµ′ and
the covariant derivative is taken relative to the connection,0σ

′
µ′ν ′ = eσ ′σ eµµ′∂µeσν ′ , induced

by going over to the new basis. Such a connection has an antisymmetric part equal to
the object of anholonomity. The variational principleδS/δwµ

′ = 0 yields celebrated
Poincaŕe’s equations. They have the form (4.9) whereL → L̃, ∂vµ → ∂vµ′ , ∂qµ → e

µ

µ′∂qµ

andSσ µν → Cσ
′
µ′ν ′ .

As we see, Poincaré’s variational principle is based on acoordinatevariation (a smooth
deformation of the path), but the variation of the velocity components is taken in a non-
coordinate basis in the tangent space. Thus, no torsion force can be gained by considering a
variational principle in an anholonomically transformed basis. By definition [5], the torsion
transforms as a tensorSσ

′
µ′ν ′ = eσ

′
σ e

µ

µ′e
ν
ν ′S

σ
µν = (0σ

′
µ′ν ′ − 0σ ′ ν ′µ′)/2 − Cσ ′µ′ν ′ . If the

torsion is zero in one basis it is zero in any other. The covariant variational principle always
induces the torsion force because the condition (4.6) is covariant under all (coordinate and
non-coordinate) transformations of the basis in the tangent space. However, it should be
kept in mind that the variation specified by the condition (4.6) is no smooth deformation of
the path with fixed ends if the torsion does not vanishes.

As a final remark, we shall point out that anholonomic variations in analytical mechanics
have also been introduced by Sedov [12] to study dynamics of dissipative systems (they
are examples of non-Lagrangian systems). He also proposed an anholonomic variational
principle for such mechanical systems and considered its applications.

5. Noether’s theorem

In Lagrangian mechanics first integrals of motion can be obtained from Noether’s theorem.
The covariant variational principle has led us to the new equations of motion (4.9). The
presence of the torsion force should affect Noether’s integrals of motion. Therefore it is
natural to expect Noether’s theorem to be modified.

Consider a one-parameter group of diffeomorphism on a manifold. Given a trajectory
qµ(s), a vector fieldωµ determines a smooth deformation of the trajectory under the one-
parameter group of diffeomorphism on the manifold

dωq
µ = ωµ dωv

µ = ω̇µ. (5.1)
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Let the Lagrangian be invariant under the transformations (5.1) up to a total time derivative

dωL = d8

ds
8 = 8(v, q, s). (5.2)

If the motion is determined by the Euler–Lagrange equation, then in accordance with
Noether’s theorem [3], the system possesses the integral of motion

dI

ds
= 0 I = ∂L

∂vµ
ωµ −8. (5.3)

The proof follows from relation (5.2) that should be written in the form

dI

ds
+ [L]µω

µ = 0. (5.4)

For the actual motion [L]µ = 0, thus leading to the conservation law (5.3). Similarly,
expressing [L]µ from (4.9) and substituting it into (5.4), we derive modified Noether’s
theorem

dI

ds
= 2Sνµσ

∂L

∂vν
vσωµ. (5.5)

In particular, for the time translation symmetry we haveωµ = vµ and8 = L. The right-
hand side of (5.5) vanishes since the torsion tensor is antisymmetric. The corresponding
integral of motion is the system energy. On the other hand, assuming the Lagrangian to be
invariant under spatial translations and rotations (e.g.L = 1

2v
2, gµν = δµν), we observe that

the momentum and the angular momentum are no longer integrals of motion for a generic
torsion tensor.

One can give two additional equivalent formulations of Noether’s theorem. Assume
that under the transformations (5.1) the following relation holds

dωL = d8

ds
− 2Sνµσ

∂L

∂vν
vσωµ. (5.6)

Then (5.3) is an integral of motion. Clearly, to achieve (5.6), the vector fieldωµ should, in
general, depend on the torsion. Although the torsion force violates the Noether conservation
law as follows from (5.5), it may also admit new torsion-dependent integrals of motion†.
To illustrate our statement, consider two-dimensional motion in the constant metric and
torsion fields,Sµνσ = γ µTνσ , whereTνσ = −Tσν is the generator of SO(2),T12 = 1,
and∂µγ ν = 0, gµν = δµν . The LagrangianL = v2

µ/2 exhibits the translational symmetry,
but this symmetry does not lead to the conservation of the momentum components as one
might see from (5.5). Nonetheless, we may solve equation (5.6) relativeωµ and find new
integrals instead of the Noether’s integrals. The solution is8 = 0, ωµ = [exp(ϕT )]µν a

ν ,
whereaµ is an arbitrary constant vector andϕ = 2δµνγ µqν . Sinceaµ is arbitrary, we have
two independent integrals of motion

I1 = v1 cosϕ − v2 sinϕ I2 = v1 sinϕ + v2 cosϕ. (5.7)

Integrals (5.7) comprise two independent first integrals for the two-dimensional autoparallel
motion in the homogeneous metric and torsion fields. We also remark thatI 2

1 + I 2
2 = 2E

whereE = L is the energy.
Instead of modifying the transformation law of the Lagrangian, one can modify the

transformation law of its arguments, the generalized coordinates and velocities. Set

dωq
µ ≡ ωµ dωv

µ ≡ dvω
µ + 2Sµνσω

νvσ . (5.8)

† This conclusion seems to be contrary to the one made in [16].
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If the Lagrangian is invariant under these transformations up to a total time derivative (see
(5.2)), then (5.3) is an integral of motion. Attention should be paid to the fact that in
contrast to the conventional formulation of Noether’s theorem [3], the transformation law
(5.8) determines no smooth deformation of the pathqµ(s) on a manifold and, in this sense,
is not induced by any diffeomorphism onM. In fact, relation (5.8) is a postulate that
specifies the transformation law oftwo independentcoordinates of the tangent bundle. One
first calculates dωL(v, q), then one setsvµ = q̇µ and looks for suchωµ = ωµ(v, q) that
(5.2) holds for some8. This procedure, although being somewhat unusual, may turn out to
be useful in seeking the integrals of motion for the modified Euler–Lagrange equations (4.9).

As an example, consider the autoparallel motion in the teleparallel space (zero Riemann–
Cartan curvature and non-zero torsion). Such spaces are used to describe a crystal with
topological defects [18]. In the anholonomic system discussed in section 2, we setf iµν = 0,
then the curvature vanishes, while the torsion does not. We reduce either of the actions
(1.3) and (1.4) on the constraint surface and obtainL = L(v, q). Now it is not hard to
verify that the transformations (5.8) withωµ = (εµ, a), ai arbitrary constants, leaves the
Lagrangian invariant (8 = 0). Sinceai are arbitrary, the quantities

I i = εiµ(q)vµ (5.9)

are the integrals of motion. Thus, the autoparallel motion in the teleparallel spaces can
be characterized by a simple property: The velocity components taken in the special non-
coordinate basis (ei = εµi ∂µ in TqM) that is transported parallel (Dµε

i
ν = 0) are the integrals

of motion (İ i = 0). This is, in general, not the case for non-teleparallel spaces.

6. A Lagrangian formalism for autoparallels

As has been pointed out in the introductionary remarks, there might exist a non-local
action whose extrema (relative to the conventional variational principle) would contain
autoparallels. In fact, there are infinitely many such actions. We shall give one of
the possible actions. It has a few additional properties that seems to us useful for the
canonical quantization of the autoparallel motion. We require that the sought action should
coincide with a local action whose extrema are geodesics when the torsion is zero, and
the non-locality can be removed by adding new degrees of freedom coupled to the original
variables. Thus, the autoparallel motion can be modelled by a holonomic dynamics with
some auxiliary degrees of freedom which admits both a Hamiltonian formalism and the
canonical quantization.

We skip the details of our derivation and just give the answer. LetSg be a local action
whose extrema are geodesics, i.e. we set

δSg

δqµ
= gµνD̄vv

ν . (6.1)

Let us introduce an integral operator3̂ by the relation∫
ds ′3µν(s, s

′)
δ

δqσ (s ′′)
Dvv

ν(s ′) = gµσ δ(s − s ′′). (6.2)

Hereafter the integration is extended from the initial to final moment of time. Consider the
non-local action

S = Sg +
∫

ds
(
Dvv

µ − D̄vv
µ
)
3̂µνDvv

ν = Sg +
∫

dsKν
µλv

µvλ3̂νσDvv
σ . (6.3)
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Using the definitions (6.1) and (6.2), one can convince oneself that fromDvv
µ = 0 follows

δqµS = 0. So the autoparallels are extrema of the action (6.3). If the torsion is zero, the
non-local term in (6.3) vanishes andS = Sg.

The non-locality of the action (6.3) still prevents us from developing a Hamiltonian
formalism. We need a local action. Fortunately, the action (6.3) can be regarded as an
effective action for physical degrees of freedom in a larger dynamical system which is
described by alocal action. Let us extend the original configuration space of the system
by auxiliary variablesyµ whose dynamics is determined by the equation

yµ = gµν3̂νσDvv
σ . (6.4)

Consider the action

S = Sg +
∫

ds[Kµνσ v
νvσ yµ + λµ(gµν�̂νσ yσ −Dvv

µ)]. (6.5)

The operator�̂ is to be chosen so that the action (6.5) turns into the action (6.3) when it is
reduced on the solution of the equation of motion for the variableλµ.

We have

gµν(s)
δS

δλν(s)
=
∫

ds ′�µσ (s, s ′)yσ (s ′)− gµνDvv
ν(s) = 0. (6.6)

From equation (6.2) it follows that the kernel of the operator�̂ can be taken in the form

�µσ (s, s
′′) = gµν(s) δ

δqσ (s ′′)
Dvv

ν(s). (6.7)

With this choice equation (6.6) becomes an ordinary linear differential equation of second
order foryµ:

ÿµ + (0µνσ + 0µσν)vσ ẏν + yν∂ν0µσλvσ vλ = Dvv
µ. (6.8)

Its solution is a sum of a general solution to the homogeneous equation�̂µνy
ν = 0 and a

special solutionyµ = gµν3̂νσDvv
σ . To recover the action (6.3), we have to supplement

equation (6.8) by the initial conditions such that the homogeneous equation has only a trivial
solution. This is always possible thanks to the linearity of the equation. In particular, one
can takeẏµ = yµ = 0 at the initial moment of time.

The local action (6.5)linearly depends on the second-order derivativesÿµ and q̈µ.
Assuming zero boundary conditions for the variableλµ, we may remove the second-order
time derivatives by integrating by parts, thus producing the final local Lagrangian that
depends only on the coordinates and velocities in the extended configuration space and
involves no higher-order time derivatives. It is important to observe that the Hessian of the
Lagrangian isnot degenerate, that is, the system exhibits no constraints. The dynamics of
the auxiliary degrees of freedomyµ and λµ has been chosen so that when the torsion is
present, the coupling between them and the original variablesqµ causes the deviation of
the trajectoryqµ(s) from the geodesic, making it the autoparallel.

In the path integral formulation of quantum mechanics, the auxiliary degrees of freedom
λµ andyµ must be integrated out to obtain an effective path integral for the original system.
This resembles the Feynman–Vernon approach to quantum dissipative systems [19], where
the non-potential friction force is generated by a special coupling of the oscillator bath to
the system. In our case, the non-potential (non-Lagrangian) torsion force is modelled by
a special coupling to theλ- and y-degrees of freedom. Extending this analogy further,
one may expect that quantum mechanics in spaces with torsion, that favours autoparallels
in the classical limit, cannot, in general, be described by the wavefunction formalism,
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rather only the density matrix can be constructed as for dissipative systems. The nice
property which could be expected is that in the semiclassical approximation the transition
amplitude generated by the effective action (6.3) is given by the geodesic actionSg taken
on the autoparallel, the non-local term of (6.3) will contribute only to quantum fluctuations
becauseDvv

µ = 0. The canonical quantization of the model will be considered elsewhere.

7. Conclusions

We have analysed the autoparallel motion from the point of view of analytical mechanics
and succeeded to represent it as a very special anholonomic constrained system. Invoking
the variational principles for anholonomic dynamical systems, we have established the
covariant variational principle for the autoparallels. We have also analysed a modification
of Noether’s theorem due to the torsion force. Finally, we have found a possible local action
whose extrema determined by the conventional Hamilton variational principle contain the
autoparallels for some degrees of freedom. The model can be canonically quantized by
means of the Dirac formalism [1].
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