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Abstract. A system with anholonomic constraints where the trajectories of physical degrees of
freedom are autoparallels on a manifold equipped with a general Cartan connection is discussed.
A variational principle for the autoparallel trajectories is derived from the d’Alambert—Lagrange
principle for anholonomic constrained systems. A geometrical (coordinate-independent)
formulation of the variational principle is given. Its relation to Sedov’s anholonomic variational
principle for dissipative systems and to Poir&arvariational principle in anholonomic reference
frames is established. A modification of Noether's theorem due to the torsion force is studied.
A non-local action whose extrema contain the autoparallels is proposed. The action can be made
local by adding auxiliary degrees of freedom coupled to the original variables in a special way.

1. Anholonomic constrained systems

There is no need to explain the importance of constrained systems in modern physics
(e.g. electrodynamics, Yang—Mills theory, general relativity, etc). Constraints in dynamical
systems are usually regarded as a part of the Euler—Lagrange equations of motion which do
not involve time derivatives of order higher than 1. In other words, both constraints and
equations of mation result from the least action principle applied to some Lagrangian. The
existence of the Lagrangian formalism is of great importance in constrained systems because
it allows one to develop the corresponding Hamiltonian formalism [1] and canonically
guantize the system [1]. Yet, the variational principle is a powerful technical tool to find
integrals of motion of dynamical systems via symmetries of the Lagrangian.

The Hamiltonian (or Lagrangian) constrained systems form a relatively small class
of constrained dynamical systems. Given an ‘unconstrained’ system whose dynamics
is governed by a Lagrangiad = L(v,x), v' and x’ being generalized velocities
and coordinates, respectively, one can turn it into a constrained system by imposing
supplementary conditiong, (v, x) = 0 (constraints) which has to be fulfilled by the actual
motion of the system. There two ways to incorporate the constraints into a dynamical
description. First, one can simply modify the Lagrangian> L + A*F, with A% being
the Lagrange multipliers and treat the latter as independent dynamical variables. In doing
so, we are led to the Lagrangian constrained dynamics. The other way is to supplement the
unconstrained Euler—Lagrange equatiopdt,L) — 9, L = O by the constraint#, = 0. It
is well known that if the constraints are not integrable, the two dynamical descriptions are not
equivalent [2, 3]. The non-integrable constraints are called anholonomic, and the dynamical

1 On leave from Laboratory of Theoretical Physics, JINR, Dubna, Russia.
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systems described in the latter of the above two ways are known as anholonomic systems. In
general, there exists no Lagrangian or Hamiltonian formalism for anholonomic systems, i.e.
they arenon-Lagrangiandynamical systems [2]. The existence of constraints implies that
the dynamical system has non-physical degrees of freedom, meaning that the actual motion
of the system is determined by a lesser number of independent parameters than the number of
initial values of generalized coordinates and velocities. For holonomic systems, the motion
of the physical degrees of freedom can be obtained by applying the conventional variational
principle to the Lagrangian reduced on the constraint surfaee L|r—o. When applied to
anholonomic constraints, this procedure leads to wrong equations of motion [2, 3]. Despite
of being non-Lagrangian, the dynamics of physical degrees of freedom in anholonomic
constrained systems may possess ‘good’ properties, e.g. a covariance under some group
transformations, existence of integrals of motion with a clear physical interpretation, etc,
that is, the properties that one always wants to see in physical systems.

An example of this kind is provided by the autoparallel and geodesic motions on a
manifold equipped with a general connectioh,, compatible with metrig,,, D, g.. =0,
where D, is the covariant derivative. In [4] it has been shown that the autoparallels can
be realized as the trajectories of the physical degrees of freedom in a special anholonomic
constrained system, while the geodesics can always be regarded as the trajectories in a
holonomic constrained system. On a manifdifl the autoparallels and geodesics are
determined respectively by the following equations covariant under general coordinate
transformations

D" = 0" +TH ;v =0 (1.2)
Dyv* = o* +TH v v® = 0. (1.2)

Here D, is the covariant derivative along the velocity veciérandI'*,,, are the Christoffel
symbols. Both equations (1.1) and (1.2) determine a curve that parallel-transports its tangent
vector along itself. The curve with such a property is the autoparallel when the most general
connection compatible with the metric is used to specify the parallel transport. The geodesic
motion occurs if the natural Riemannian connection (induced by the metric) is chosen to
define the parallel transport. The difference of (1.1) from (1.2) resides in the torsion force
term. Any connection compatible with the metric can always be represented in the form
(5] goal* 0 = 1_“0,“, + Ko, WhereKy,, = Sop0 — Suve + Svoy 1S called the contorsion
tensor, anq;“SMU =80 = %(F"lw —TI7,,) is the torsion tensor. The deviation of the
autoparallels from the geodesics is caused by the torsion Ky¢gv’ve.

The geodesic equation (1.2) follows from the Hamilton variational principle applied to
the action

S = %/dt guvvtv” (1.3)

or to its relativistic analogue

S:—/ds:—/dt\/g,wv—ﬂv” (1.4)

with s being the proper time (or length) of the trajectory (in this cage= dg*/ds and

v* = dv*/ds in (1.2)). A particle moving along the autoparallel trajectory is an example
of a non-Lagrangian system. A system of differential equations of second order is called
Lagrangian if there exists a local Lagrangian such that the original system is equivalent to
the Euler-Lagrange equations. One can formulate the sufficient conditions, known as the
Helmholtz conditions, for a given dynamical system to be Lagrangian [6]. Even if these
conditions are not fulfilled, one can still try to findn@n-local action for a given dynamical
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system. In section 6 we construct an explicit example of a non-local action whose extrema
contain the autoparallels. From the geometrical point of view equation (1.1) is just as good
as equation (1.2) and may be regarded or postulated as an equation of motion of a spinless
particle on a manifoltl

Here we generalize the embedding procedure of [4] to arbitrary spaces with curvature
and torsion. Next we use the representation of the autoparallel motion as a motion of an
anholonomic system to establish a variational principle for the Lagrangians (1.3) and (1.4)
which leads to equation (1.1). The variational principle is derived from the well known
variational principles for anholonomic systems, such as Gauss’ principle of least constraint,
Holder and d’Alambert—Lagrange principles [2, 3, 10]. However, in contrast to them, it
has an advantage in that it applies to Lagrangi@uicedon the surface of constraints.
We shall also show that the new variational principle can be given a completely covariant
(coordinate-independent) formulation on a manifold with a general Cartan connection. For
this reason we shall refer to it asavariant variational principle. Its relation to the
variational principle of Poincé&r[11] and to that proposed by Sedov for dissipative systems
[12] is explained. Finally, we propose a modification of the actions (1.3) and (1.4) by
adding new auxiliary degrees of freedom so that the modified actions have extrema being
the autoparallels and admit the conventional Hamiltonian formalism.

2. Autoparallels from constrained motion

Consider a metric manifold/ and local coordinateg” on it. LetI'*,, be components of
a connection onV in the coordinate basis. We dend®& M) the space of all paths in,
T,M the tangent space at a poipt, and7 M the tangent bundle. Consider an auxiliary
Euclidean spac&” of the dimension greater than that &1, » > dimM. Cartesian
coordinates inR” are denoted by’. In the spaceP(R") of all paths inR” we define a
subspace o€onceivablepaths (i.e. of those allowed by constraints) as an image @f)

in the embeddingP?(M) — P(R"):

x(s) = / dg* &), (q) (2.1)

for any pathg”(s) in M. The embedding functionsl(q) are smooth orM. From the path
embedding (2.1) follows the embedding of the tangent sigga¢ into R”

v = 8L(q)v“ vt e T,M (2.2)
because one can always find a cug/é&(s) passing through a poing#* such thatv* =
dg* (s)/ds.

The spaceM cannot be embedded intR” pointwise if the constraints (2.2) on

the tangent space (or on the velocities of the conceivable motion) are not integrable
(anholonomic constraints):

ygdq“ el(q) #0 (2.3)

for any closed path i4. That is, the one-formsjtdq“ are not closed, and there exist no
mappingM — R, x = x'(g), induced by (2.2).

1 Here we do not discuss physical arguments which of those two trajectories should be identified with a physical
trajectory of a spinless point-like particle moving in a space with torsion. An interested reader may find physical
arguments supporting both geodesics [7] and autoparallels [8, 9]. Note also that a massive particle with spin would
follow neither of these trajectories due to the interaction between its spin and the spacetime geometry.
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The scalar product ifR”, (w,v) = §;w’v/, induces the metric od/. For any two
vectors being the images of two elementsTpM we have

(w, v) = gw"v® 8uv = (&, &) v, wt e T,M. (2.4)

Next, we determine a connection induced by the path embedding. To do so, we require that
the parallel transport idf must be compatible with the embedding (2.1). This means the
following. Consider a curve’(s) passing through a point* € M and its imagex/(s).
Take a vector fieldv* € T, M and parallel-transport it along the cury&(s). The resulting
vector is then embedded infR” by means of (2.2). Let us repeat the procedure in the
opposite way. First we embed the vectot and then parallel-transport its image along
x'(s), the image ofg(s). The compatibility condition implies that the vectors obtained
by these procedures may differ by a vector orthogonal to the hyperplane being the image
of T, M, and this should hold for any curve and amy. We remark that this condition is
weaker than a similar condition of [4] and it is sufficient to obtain the most general spaces
with curvature and torsion.

An infinitesimal variation ofw* under the parallel transport is proportional /g w*,
wherev* = ¢/, while the corresponding variation of its image; = &/, w", is D,w’ =
d,w’ = dw'/ds because the connection RY is trivial. The compatibility condition means
that

dw’

& ezDvw“ = flivv“wU (s, fuv) =0. (2.5)

Computing the derivative in the left-hand side of (2.5) and assumih@nd w* to be
arbitrary we find

D&l = f;iw (2.6)
Multiplying this equation bys! we obtain the connection coefficients
Fllva = g//«)\(g)” 0v€5) (27)

where g"#g,, = 82. It is easy to verify that the compatibility condition also holds for
tensors of higher rank, provided the induced metric is used to lower and rise tensor indices.
Thanks to the compatibility condition, the induced connection turns out to be compatible
with the induced metrid, g,, = (D,é&.. &) + (64, Dye,) = 0. In the non-integrable case
(2.3), the induced connection may have a torsion

Suvcr = %gul [(8)” 81180) - (EA, 80'811)] . (28)
The tensor fieldg‘/iv must also satisfy the integrability condition for equation (2.6) resulting
from the commutation relation

[D;u Dv] = RMU{T)LLO')\. - 2S”[u)Da (29)

whereL,, = —L,, are generators of a (pseudo)orthogonal group acting in the tangent
space ofM, and R,,°* is the Riemann—Cartan curvature tensor. Using the integrability
conditions we derive

(f;u, fvrr) - (fv)w f/ur) = ZRMuAa' (210)

That is, the tensor fieldg;,, determine the Riemann—Cartan curvature tensomMonThe
casefk’;v = 0 corresponds to the so-called teleparallel spaces with zero curvature and non-

zero torsion. With sufficiently large (at least one should have: 2> 1 + (dim M)?, the
number of independent components of the metric and torsion tensors), one can construct
the most general connection ax.
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Let us analyse dynamics induced by the anholonomic constraints (2.2), assuming the
unconstrained motion to be a free motion in the Euclidean sfceThere are several
variational principles for anholonomic systems [10] that can be applied to our system to
derive the equations of motion. If the constraints are integrable, they are all equivalent to
the conventional Hamilton variational principle.

In the auxiliary Euclidean space the states of the system are labelled byypairs
(', x"). For any two trajectories:iz(s) passing through the statg, Gauss’' deviation
function is defined as [3, 2]

Gy = 30} — vh) Hy (0] — 03) (2.11)
where H;; (y) = 3%L/dv'dv/ is the Hessian for a Lagrangiah in the statey. Gauss’
principle of least constraint states that the deviation of conceivable motions (allowed by
the constraints) from the released (unconstrained) motion takes a stationary value on the
actual motion. A physical meaning of Gauss’ principle is transparent: the acceleration (or
the force) caused by the constraints must have a minimal deviation from the acceleration
of the unconstrained motion. In our system the released motion is the free motion

vl =0, H;; = é&;, the accelerations of the conceivable motion are obtained by taking a
time derivative of (2.2). The Gauss deviation function assumes the form

Gw = %g;vaUvavM + %(fvv fo) f; = f;iuvuvv~ (212)

The second term in the deviation function does not depend on the acceleration at the physical
statey = (¢*, v*), while the first term is non-negative and attains its absolute minimum if
D,v* =0, i.e. for the autoparallel trajectories.

Let us denote the Lagrange derivative &3;[= —d/ds(d,;L) + 9,: L. We recall that
elements of the tangent space are also caligdal velocitiesin analytical mechanics. The
d’Alambert—Lagrange principle asserts that the conceivable motion of a system with the
LagrangianL is an actual motion if for every moment of time [3, 2]

(w,[L]) =0 (2.13)
for all virtual velocities of the constrained motion. We take= (v, v)/2 and calculate
[L]; for the conceivable motionl]], = —v' = —d/ds(va“). For virtual velocities
of the constrained motion’ = 8Lw“, equation (2.13) assumes the fortw, [L]) =

—gww'D,v* = 0. For an arbitraryw*, it leads to the autoparallel equation (1.1).

There is an equivalent formulation of the d’Alambert—Lagrange principle known as
Holder’s variational principle [3, 2]. A conceivable path is called a critical point of the
action functional if its variation vanishes when restricted on the subspace of virtual velocities
of the constrained motion. dfider’s variational principle assumes that the actual constrained
motion is the critical point of the action. For an infinitesimal variation of the trajectory we
havesx'(s) = uw'(s), u — 0. ThensS[x]/8x' = 3,S[x + 8x]|.—o = 0. This is equivalent
to (2.13). Restricting the virtual velocity’ to the subset specified by constraint (2.2) we
arrive at the autoparallel equation (1.1).

All the conventional variational principles for anholonomic systems are appliadne
constrainedLagrangians, while the constraints are implemented through the restriction of
path variations to apecific class determined by the constraints. We shall now develop
this idea further and find an equivalent variational principle that applies to the Lagrangian
restricted on the surface of constraints. We recall that for anholonomic constraints the
Hamilton variational principle leads to wrong equations of motion, when applied to the
Lagrangian restricted on the constraint surface. In particular, we shall find a variational
principle for the Lagrangian (1.3) or (1.4) that leads to the autoparallel equation (1.1).
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Before we proceed let us make a remark. Our treatment of the autoparallel motion as an
anholonomically constrained motion is somewhat unconventional. Typically, anholonomic
constraints are imposed directly on positions and velocities of the unconstrained motion, i.e.
onx’ andv’ (e.g. a skater on an inclined plane, a rolling ball on a rough surface, etc, [3, 13]).
They can be regarded as restrictions onittigal values of velocities and positions so that
solutions of equations of motion depend on the less number of parameters. A historical
reason for such a treatment is that the positishsan be measured and have a natural
physical meaning in many concrete anholonomic systems [13]. It is important to observe
that for anholonomic constraints there exists no subspace in the original configuration space
that could be identified with the physical configuration space formed by initial values
of positions allowed by the constraints. In our anholonomic system, we have explicitly
introduced a physical configuration spakge while the auxiliary Euclidean space is used
only to formulate a dynamical principle that specifies the motioMinSince anholonomic
constraints do not allow us to regasd as a submanifold in the configuration spake
of the unconstrained system, we have imposed constraints by restricting pditistin
a subclass permitted by the constraints, i.e. through the embedding of all trajectories of
physical degrees of freedof(M) into P(R"). This is always possible for any type of
constraints.

3. Variational principle on manifolds

Here we shall give a formulation of the variational principle on manifolds that is convenient
for the subsequent generalization to anholonomic systems.
Consider a vector fieldv*(¢) on M satisfying the boundary condition

wh(g1) = w"(g2) =0 (3.1)

and an action functiona§ = [ ds L(v, ¢) for any trajectory connecting the poing$,. We
definea variation of the action relative the vector fiald by

aL oL
8pS = /ds —d, v* + —w" ). 3.2)
av# agh

The derivative dv* of the velocity along the variation vector field specifies the variation
of v*. Given a trajectory” = g*(s), the velocity vector field* is known only along the
trajectory, while we need to know the behaviourwdf in the vicinity of the trajectory in
order to calculate gv* for a genericw*. We require

Lyt =d,v* —dyw* =0 (3.3)

where £,v* = —L,w"* denotes the Lie derivative oM. Thus, for any Lagrangian,
being a function on the tangent bundié/, the smooth vector fieleb” on M determines a
variation of the position, and equation (3.3) specifies the variation of the second independent
coordinate orif" M, the velocityv*. Equation (3.3) can be given a tensor form symmetrical
relative the velocity and variation vector fields

Lyt = LowM. (3.4)

The Euler—Lagrange equation follows fromud* = dw* /ds, the boundary condition (3.1)
ands, S = 0 that should hold for anyw*. Since the Lie derivative of a tensor is a tensor
[5], equations (3.3) and (3.4) are covariant under general coordinate transformations, and
so are the corresponding equations of motion if the Lagrangian is a scalar.

The above geometrical formulation of the variational principle is equivalent to the
conventional one where the variation of the action is defined via smooth path variations.
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Indeed, equation (3.3) implies that for any trajectgty(s) with fixed endpoints there exists
a one-parameter family of trajectorigs (s, u) = g/ (s) with the same endpoints such that
g"(s,u = 0) = g"(s) andw* = 9,4" (s, u) in the vicinity of the trajectoryy*(s). In other
words, there exists a local coordinate gé{s, ) such thatw* andw* are tangent vectors
for the coordinate lineg = constant and = constant, respectively. The variableplays
the role of the variation parameter so thatS[q¢] = d/du S[q.]|.-o-

If the velocity variation is specified by means of a new principle, other than a
smooth deformation of the path, condition (3.3) would become modified and, therefore,
the variational principle would yield new equations of motion. To obtain such a new
principle for the autoparallel motion, we use the variational principles for anholonomic
systems discussed in section 2. If condition (3.3) is dropped, then there exists no coordinate
netg*(s, u) such thatw* = a,4*(s, u) if v* = d,q*(s, u). For this reason the variation
(3.2) will be called non-coordinate or anholonomic. Note thétremains a smooth vector
field on M.

4. Covariant variational principle

On a pathy* (s) with fixed endpoints, consider a vector field' that satisfies the boundary
condition (3.1). Its imagev’(s) = 8L(q(s))w“(q(s)) determines a variation vector field on
the image trajectory’(s). By construction the variation vector field (s) belongs to the
class of virtual velocities allowed by the constraints. The variation of the velocity vector
d,v* is to be determined by &lder’s variational principle (2.13). We assume that the
variation (3.2) of the unconstrained actigm is to be replaced by the Cartesian indgxs
equal to the Wlder variation (2.13) when the former is restricted on the constrained surface

§pS = /ds (w, [L]). 4.1

Integrating by parts in the right-hand side of (4.1) and making use of the boundary condition
(3.1) we obtain

(dwv, %> = (duw, %> . (4.2)
ov ov

The integration has been omitted because (4.1) holds for an arbitrary variation vector field
w

allowed by the constraints. On the constraint surface, we liave = EﬁlavuL, & =
8;j8" ey andw’ = &), w*. Relation (4.2) leads to

(dpv —dyw, e*) =0 (4.3)
sinced,. L is also arbitrary. From the compatibility condition (2.5) it follows that

(dyv, ") = D" (4.4)
and, similarly,

(d,w, e") = D,w". (4.5)

Equation (4.3) leads to the sought-for condition that specifies the variation of the velocity
v

D,v* = D,w". (4.6)
It can be written as
Lyo" =dyv* —dw* =25%,,v"we. 4.7
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The derivative ¢v* is proportional to the difference of the vector field at two
neighbouring pointg* andg* +uw", u — 0, i.e.u d,v* = (v* +u d,v*) —v*. A similar
interpretation holds for dv*. The left-hand side of equation (4.7) contains four vectors
that can be combined to form a parallelogrant f+ (v* + u d,, v*)] — [v* + (W + u d, wH)]
which is not closed as follows from (4.7). Thusplder’s variational principle has led us
to the conclusion that the velocity variation must be chosen so thatltisere failure of
the parallelogram formed by the velocity and variation vectors would be proportional to
the torsion. Note also that the closure failure of the parallelogram induced by the parallel
transport of any two vector fields along one another (4.6) is also sddfinethe torsion
on a manifold [5].

Let us take a Lagrangiah = L(v, g) on T M and find the equation of motion resulting
from the new variational principle. Substituting,@* into (3.2) and using the boundary
condition (3.1) to integrate by parts, we obtain

oL
3uS = / dsw" ([L],L + ZS”Ma—v"> . (4.8)
UV
The modified Euler-Lagrange equations are
d L oL oL
—— = — = 25",,—" =0. (4.9)
ds dv*  agh ovY

To obtain equation (4.9) for the autoparallel motion in spaces with torsion, the
noncommutativity of the variation and time derivative has been first postulated in [14]
and later also considered in [15, 16].

Taking the Lagrangiad = (v, v)/2 or L = —/(v, v) in the auxiliary Euclidean space
and restricting it on the constraint surface= va“, we obtain the action (1.3) or (1.4). By
construction the variational principlg,S = 0, where the variation off M is determined
by (4.6), should yield the autoparallel equation (1.1). It is not hard to be convinced that the
modified Euler—Lagrange equation (4.9) indeed leads to (1.1).

A few remarks are in order. Our derivation of the condition (4.6) does not rely on
whether the unconstrained Lagrangian explicitly depends on the auxiliary Cartesian variables
x* or not. The terms involving),: L in equation (4.1) are cancelled. For this reason the
final condition (4.6) does not depend on the form of the auxiliary unconstrained Lagrangian
and may be applied to any Lagrangian on the physical configuration space.

Condition (4.6) is covariant under general coordinate transformationaf cemd has
a transparent geometrical meaning. cAvariant variation of v* along w* is equal to
a covariant variation ofw” along v*. All the modification of (3.4) we have made is
that the Lie variation has been replaced by the covariant variation. It is quite remarkable
that for tensors on a manifold there exists ohlo independent variations that produce
tensors out of tensors and involve a displacement [5,p 336]: the Lie varigtjoand
the covariant variatiorD,,. Thus, two geometrically distinguished curves on a manifold,
geodesics and autoparallels, can be associated with the two independent variations available
on the manifold equipped with a connection compatible with the metric.

If the torsion is not zero, the variations induced by operatbys and D, are non-
coordinate (or anholonomic) because the bdsisin T, M is a non-coordinate basis [17].
Indeed, assume that there exists a coordinategie= ¢ (s, u) such that the relation
d;.« = Dy, holds. TakingF to be a scalar, from (2.9) we derive

[D,.D,)F = —25°,,D, F. (4.10)

The curvature term does not contribute to the commutator (4.10) bedausea scalar.
Thus, Ps, 3,] # 0, and there is no coordinate system for which the covariant derivatives
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D, ., play the role of the translation operators along the coordinate lines.

The use of a non-coordinate basis in the tangent space to determine a variation of the
action is not something unusual in mechanics. Some analogy can be made with &sincar
variational principle in non-inertial reference frames (e.g. a rigid body in the body-fixed
reference frame) [11, 3]. One looks foreformulationof the Hamilton variational principle
in anon-coordinatebasis in the tangent spaceMt. The coordinate basis ifj, M can always
be chosen a$, so that a variation o¥'(¢) is §,F ~ 3, F. We can also assume another
basise,, = eZ, (¢)9, in the tangent space to determine a variation of any quantity/orn
general, this basis is non-commutative and, hence, non-coordinate

[e/l./a eu’] = ZCO-,/I./U’EO’/ (411)

where the structure functions of the Lie algebra (4.11) are coefficients of the object of

anholonomity [5]. In the new basis we havé = ¢/v", e/ e/’ = §!'. The components

v"" of the velocity vector field in a non-coordinate basis are called quasivelocities because
there is nog” (¢) such thatv® = ¢*. The problem is to find a variational principle

for the Lagrangian where the velocity components are taken in the non-coordinate basis,
L(w", g") = L(v*,¢"). It is solved by rewriting equations (3.2) and (3.3) in the non-
coordinate basis. Equation (3.3) assumes the form (4.6) whegereplaced byu’ and

the covariant derivative is taken relative to the connectioh,,,, = eg’eﬁ,aue‘v’,, induced

by going over to the new basis. Such a connection has an antisymmetric part equal to
the object of anholonomity. The variational principi§/sw* = 0 yields celebrated
Poincaé’s equations. They have the form (4.9) whére> L, 0, — 3, dgu — elydgn

and SUMU — C”/p.’v’-

As we see, Poincéts variational principle is based oncaordinatevariation (a smooth
deformation of the path), but the variation of the velocity components is taken in a non-
coordinate basis in the tangent space. Thus, no torsion force can be gained by considering a
variational principle in an anholonomically transformed basis. By definition [5], the torsion
transforms as a tensd” ., = eJ el e}, 8%, = (07 — T y0)/2 = C7 . I the
torsion is zero in one basis it is zero in any other. The covariant variational principle always
induces the torsion force because the condition (4.6) is covariant under all (coordinate and
non-coordinate) transformations of the basis in the tangent space. However, it should be
kept in mind that the variation specified by the condition (4.6) is no smooth deformation of
the path with fixed ends if the torsion does not vanishes.

As a final remark, we shall point out that anholonomic variations in analytical mechanics
have also been introduced by Sedov [12] to study dynamics of dissipative systems (they
are examples of non-Lagrangian systems). He also proposed an anholonomic variational
principle for such mechanical systems and considered its applications.

5. Noether's theorem

In Lagrangian mechanics first integrals of motion can be obtained from Noether’s theorem.
The covariant variational principle has led us to the new equations of motion (4.9). The
presence of the torsion force should affect Noether’s integrals of motion. Therefore it is
natural to expect Noether's theorem to be modified.

Consider a one-parameter group of diffeomorphism on a manifold. Given a trajectory
q"(s), a vector fieldw* determines a smooth deformation of the trajectory under the one-
parameter group of diffeomorphism on the manifold

d,q" = " d,v* = 0. (5.1)
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Let the Lagrangian be invariant under the transformations (5.1) up to a total time derivative
_do
T s

If the motion is determined by the Euler—Lagrange equation, then in accordance with
Noether’s theorem [3], the system possesses the integral of motion

d,L D =d(v,q,s). (5.2)

drl oL

— =0 1 = —ot— o. 5.3

ds 8v“w (5-3)
The proof follows from relation (5.2) that should be written in the form

dr

. +[L],0" = 0. (5.4)

For the actual motionIf], = 0, thus leading to the conservation law (5.3). Similarly,
expressing L], from (4.9) and substituting it into (5.4), we derive modified Noether's
theorem
d7 , L
ds 25 wo vy
In particular, for the time translation symmetry we hawe = v* and® = L. The right-
hand side of (5.5) vanishes since the torsion tensor is antisymmetric. The corresponding
integral of motion is the system energy. On the other hand, assuming the Lagrangian to be
invariant under spatial translations and rotations (&.e: %vz, guv = 8,v), we observe that
the momentum and the angular momentum are no longer integrals of motion for a generic
torsion tensor.
One can give two additional equivalent formulations of Noether's theorem. Assume
that under the transformations (5.1) the following relation holds

do L
OL o, (5.6)
v

V7wt (5.5)

Then (5.3) is an integral of motion. Clearly, to achieve (5.6), the vector di€éldhould, in
general, depend on the torsion. Although the torsion force violates the Noether conservation
law as follows from (5.5), it may also admit new torsion-dependent integrals of mjotion

To illustrate our statement, consider two-dimensional motion in the constant metric and
torsion fields, $*,, = y#T,,, whereT,, = —T,, is the generator of SO2¥, = 1,
andd,y’ =0, g, = 8,,. The LagrangiarL = vi/Z exhibits the translational symmetry,

but this symmetry does not lead to the conservation of the momentum components as one
might see from (5.5). Nonetheless, we may solve equation (5.6) relativend find new
integrals instead of the Noether’s integrals. The solutiod®is= 0, w* = [exp(eT)]*a”,
wherea is an arbitrary constant vector agd= 25, y*¢". Sincea” is arbitrary, we have

two independent integrals of motion

I = v1COSp — Vo SiNgE I, = v1Sing + v, COSp. (5.7)

Integrals (5.7) comprise two independent first integrals for the two-dimensional autoparallel
motion in the homogeneous metric and torsion fields. We also remarkihati? = 2E
whereE = L is the energy.

Instead of modifying the transformation law of the Lagrangian, one can modify the
transformation law of its arguments, the generalized coordinates and velocities. Set

d,g" = 0" d,v* = dyot + 28* ;0" 7. (5.8)

T This conclusion seems to be contrary to the one made in [16].
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If the Lagrangian is invariant under these transformations up to a total time derivative (see

(5.2)), then (5.3) is an integral of motion. Attention should be paid to the fact that in

contrast to the conventional formulation of Noether's theorem [3], the transformation law

(5.8) determines no smooth deformation of the pgtls) on a manifold and, in this sense,

is not induced by any diffeomorphism a¥. In fact, relation (5.8) is a postulate that

specifies the transformation law tfo independentoordinates of the tangent bundle. One

first calculates gL (v, ¢), then one sets* = g* and looks for suchw” = w*(v, g) that

(5.2) holds for someab. This procedure, although being somewhat unusual, may turn out to

be useful in seeking the integrals of motion for the modified Euler—Lagrange equations (4.9).
As an example, consider the autoparallel motion in the teleparallel space (zero Riemann—

Cartan curvature and non-zero torsion). Such spaces are used to describe a crystal with

topological defects [18]. In the anholonomic system discussed in section 2, \N/(;vseto,

then the curvature vanishes, while the torsion does not. We reduce either of the actions

(1.3) and (1.4) on the constraint surface and obfaia= L(v,g). Now it is not hard to

verify that the transformations (5.8) with* = (¢*, a), a’ arbitrary constants, leaves the

Lagrangian invariant® = 0). Sincea’ are arbitrary, the quantities

I' = si(q)v" (5.9

are the integrals of motion. Thus, the autoparallel motion in the teleparallel spaces can
be characterized by a simple property: The velocity components taken in the special non-
coordinate basis( = ¢/, in T, M) that is transported paralleD(,¢ = 0) are the integrals

of motion (I’ = 0). This is, in general, not the case for non-teleparallel spaces.

6. A Lagrangian formalism for autoparallels

As has been pointed out in the introductionary remarks, there might exist a non-local
action whose extrema (relative to the conventional variational principle) would contain
autoparallels. In fact, there are infinitely many such actions. We shall give one of
the possible actions. It has a few additional properties that seems to us useful for the
canonical quantization of the autoparallel motion. We require that the sought action should
coincide with a local action whose extrema are geodesics when the torsion is zero, and
the non-locality can be removed by adding new degrees of freedom coupled to the original
variables. Thus, the autoparallel motion can be modelled by a holonomic dynamics with
some auxiliary degrees of freedom which admits both a Hamiltonian formalism and the
canonical quantization.

We skip the details of our derivation and just give the answer.Sk.die a local action
whose extrema are geodesics, i.e. we set

SSK N o,V
(Sq_ﬂ = 8/4va1) . (61)

Let us introduce an integral operatarby the relation
’ 4 8 % / "
/ds Aw(s,s)Wva (s") = gusd(s —s"). (6.2)

Hereafter the integration is extended from the initial to final moment of time. Consider the
non-local action

NESI —}—/ ds (va" — va") ZA\WDUvU =S, ~|—/ dsK”Mv"v’sz\mva“. (6.3)
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Using the definitions (6.1) and (6.2), one can convince oneself that fignt = O follows
8,8 = 0. So the autoparallels are extrema of the action (6.3). If the torsion is zero, the
non-local term in (6.3) vanishes amsd= S,.

The non-locality of the action (6.3) still prevents us from developing a Hamiltonian
formalism. We need a local action. Fortunately, the action (6.3) can be regarded as an
effective action for physical degrees of freedom in a larger dynamical system which is
described by docal action. Let us extend the original configuration space of the system
by auxiliary variablesy* whose dynamics is determined by the equation

yﬂ :gm}[\vavag~ (64)
Consider the action

S=8,+ / ds[K e v 07 y* + )\M(g’“’fzmy" — D,vM)]. (6.5)

The operato@ is to be chosen so that the action (6.5) turns into the action (6.3) when it is
reduced on the solution of the equation of motion for the variahle
We have

88
Shu(s)

From equation (6.2) it follows that the kernel of the operdican be taken in the form

g;w(s) / dS,Q;w(Sv S,)yo(sl) - g;vavv(S) =0. (66)

QMU(S,S”) :g/w(s) Duvv(s)- (67)

)
8q°(s")
With this choice equation (6.6) becomes an ordinary linear differential equation of second
order for y*:

A4 (TH e + TH VY + 3V, TH 07 v = Dyvt. (6.8)

Its solution is a sum of a general solution to the homogeneous eqLQLipyf =0and a
special solutiony* = g A,, D,v°. To recover the action (6.3), we have to supplement
equation (6.8) by the initial conditions such that the homogeneous equation has only a trivial
solution. This is always possible thanks to the linearity of the equation. In particular, one
can takey” = y* = 0 at the initial moment of time.

The local action (6.5)inearly depends on the second-order derivatig¢sand g*.
Assuming zero boundary conditions for the variab)g we may remove the second-order
time derivatives by integrating by parts, thus producing the final local Lagrangian that
depends only on the coordinates and velocities in the extended configuration space and
involves no higher-order time derivatives. It is important to observe that the Hessian of the
Lagrangian isnot degenerate, that is, the system exhibits no constraints. The dynamics of
the auxiliary degrees of freedont* and 1, has been chosen so that when the torsion is
present, the coupling between them and the original variaptesauses the deviation of
the trajectoryg”(s) from the geodesic, making it the autoparallel.

In the path integral formulation of quantum mechanics, the auxiliary degrees of freedom
A, andy* must be integrated out to obtain an effective path integral for the original system.
This resembles the Feynman—\Vernon approach to quantum dissipative systems [19], where
the non-potential friction force is generated by a special coupling of the oscillator bath to
the system. In our case, the non-potential (non-Lagrangian) torsion force is modelled by
a special coupling to theé- and y-degrees of freedom. Extending this analogy further,
one may expect that quantum mechanics in spaces with torsion, that favours autoparallels
in the classical limit, cannot, in general, be described by the wavefunction formalism,
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rather only the density matrix can be constructed as for dissipative systems. The nice
property which could be expected is that in the semiclassical approximation the transition
amplitude generated by the effective action (6.3) is given by the geodesic &gtiaken

on the autoparallel, the non-local term of (6.3) will contribute only to quantum fluctuations
becauseD,v* = 0. The canonical quantization of the model will be considered elsewhere.

7. Conclusions

We have analysed the autoparallel motion from the point of view of analytical mechanics
and succeeded to represent it as a very special anholonomic constrained system. Invoking
the variational principles for anholonomic dynamical systems, we have established the
covariant variational principle for the autoparallels. We have also analysed a modification
of Noether’s theorem due to the torsion force. Finally, we have found a possible local action
whose extrema determined by the conventional Hamilton variational principle contain the
autoparallels for some degrees of freedom. The model can be canonically quantized by
means of the Dirac formalism [1].
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